Inhaltsverzeichnis

BIOLOGIE – DIE WISSENSCHAFT VOM LEBEN	STOFFWECHSEL

Prinzipien des Lebendigen – Basiskonzepte der Biologie	8	Biokatalyse	66
Organisationsebenen des Lebendigen	12	Enzyme – Katalysatoren biologischer Reaktionen	67
Wissenschaft vom Leben	14	Struktur und Wirkungsweise von Enzymen	68
		Werkzeuge der Zellen: Übersicht Enzyme	70
ZELLBIOLOGIE		Material · Methode · Praxis:	
		Urease ein Enzym im Experiment	72
Zelle – Gewebe – Organismus	16	Einflüsse auf die Enzymwirkung	74
Geschichte der Zellbiologie	17	Enzymregulation	76
Das Lichtmikroskop	18	Enzyme in der Medizin	77
Material · Methode · Praxis:		Enzyme in der Biotechnologie	78
Der Einsatz des Lichtmikroskops	20	Kompetenzen: Biokatalyse	79
Das lichtmikroskopische Bild der Zelle	22		
Der Zellzyklus	24	Biologie angewandt:	
Der Ablauf der Mitose	26	Die Hefe – ein besonderer Nutzpilz	80
Material · Methode · Praxis:		Biologie der Hefe	81
Untersuchung von Mitosestadien	28	Versuche zur Gärung	82
Genetisch programmierter Zelltod	29	Bierbrauen – eine alte Biotechnologie	83
Zell- und Gewebetypen	30		
Einzeller	32	Biologie angewandt:	
Einzeller – Zellkolonie – Vielzeller	34	Das Herz – Motor des Kreislaufs	84
Kompetenzen: Zelle – Gewebe – Organismus	35	Feinbau und Stoffwechsel des Herzens	85
		Versuche zu Herz und Kreislauf	86
Feinbau der Zelle	36	Das gesunde und das kranke Herz	87
Das Elektronenmikroskop	37		
Material · Methode · Praxis:		Betriebsstoffwechsel und Energieumsatz	88
Elektronenmikroskopische Präparationsmethoden	38	Untersuchungsmethoden und Grundmuster des	
Kompartimentierung durch Membranen	39	Stoffwechsels	89
Chemische Grundlagen: Lipide	40	Bereitstellung von Stoffen aus der Nahrung:	
Chemische Grundlagen: Proteine	41	Verdauung	90
Raumstruktur der Proteine	42	Chemische Grundlagen: Kohlenhydrate	92
Modellvorstellungen von der Biomembran	43	Äußere Atmung: Transportsysteme und Gasaustausch	94
Feinbau der Biomembran	44	Transport von Sauerstoff im Blut	96
Stofftransport: Diffusion und Osmose	46	Regulation der Sauerstoffkonzentration im Blut	97
Osmose und der Wasserhaushalt der Zelle	47	Atmung unter Extrembedingungen	98
Stofftransport: Kanal- und Carriertransport	48	Material · Methode · Praxis:	
Stofftransport: Endocytose, Exocytose, Membranfluss	49	Versuche zur Atmung	99
Die Zellorganellen	50	Zellatmung: Bereitstellung der Energie in der Zelle	100
Material · Methode · Praxis: Isolierung von Zellbestandteilen	54	Energiegewährung ATP	101
Material · Methode · Praxis:		Chemische Grundlagen: Oxidation, Reduktion,	
Interpretation elektronenmikroskopischer Bilder	55	Reduktionsäquivalent	102
Prokaryoten	56	Aerober Abbau von Glucose – die Glykolyse	103
Eukaryoten, Prokaryoten, und Viren im Vergleich	57	Der Citratzyklus	104
Herkunft der Eukaryotenzelle	58	Die Atmungskette	105
Kompetenzen: Feinbau der Zelle	59	Energieumsatz und seine Messung	106
•		Stoff- und Energiebilanz der Zellatmung	107
		Energiegewinnung ohne Sauerstoff: Gärung	108
Biologische Prinzipien: Zellbiologie	60	Material · Methode · Praxis:	
		Energiegewinnung	109
Biologie angewandt:		Bau der Muskeln	110
Tolle Knolle – Untersuchungen an der Kartoffel	62	Muskelkontraktion	111
Ein Blick in die Kartoffel	63	Ausscheidung	112
Die Kartoffel und ihre Enzyme	64	Kompetenzen:	
Kartoffelstärke als nachwachsender Rohstoff	65	Betriebstoffwechsel und Energieumsatz	113
		0	

Biologie angewandt:		Regulation der Genaktivität bei Eukaryoten	163
Sport und Stoffwechsel	114	Krebs	164
Muskelzellen brauchen Energie	115	Kompetenzen: Molekulargenetik	165
Untersuchungen rund um den Sport	116		
Leistungssteigerung allein durch Sport	117	Biologie angewandt:	
		DNA-Reparatur – Selbstschutz der Zelle	166
Biologie angewandt:		DNA-Schäden und Reparaturmechanismen	167
Regelung des Wasserhaushalts – die Niere	118	Versuche zu Schäden durch UV-Licht	168
Bau der Niere – makroskopisch und mikroskopisch	119	Schönheit contra Hautkrebs	169
Funktion der Niere im Detail	120		
Nieren zur Osmoregulation	121	Klassische Genetik, Cytogenetik und Humangenetik	170
		Erbe – Umwelt – Merkmal	171
Fotosynthese	122	Die mendelschen Regeln der Vererbung	172
Licht – Farbe – Absorption	123	Chromosomen und Vererbung	174
Fotosynthese: Überblick	124	Chromosomen als Träger der Gene	176
Material · Methode · Praxis:		Material · Methode · Praxis:	
Chromatographie	125	Drosophila – Modelltier der Genetik	177
Fotosynthese: Strukturen	126	Mutationen durch Veränderungen der Chromosomen	178
Thylakoidmembran – die "Werkbank" der Fotosynthese	127	Material · Methode · Praxis:	
Ablauf der Fotosynthese	128	Chromosomen und Karyotyp	179
Abhängigkeit der Fotosynthese von Umweltfaktoren	130	Vererbung beim Menschen	180
Material · Methode · Praxis:		Analyse menschlicher Erbgänge	182
Licht, Blattpigmente und Fotosynthese	131	Genetische Beratung	184
Material · Methode · Praxis:		Material · Methode · Praxis: Pränatale Diagnostik	185
Bedingungen und Leistungen der Fotosynthese	132	Vererbung komplexer Merkmale	186
Fotosynthese und Licht im Lebensraum	134	Die Rolle der Epigenetik	187
Verwertung der Fotosyntheseprodukte in der Pflanze	136	Epigenetische Regulation	188
Varianten der Fotosynthese	137	Kompetenzen:	
Energiegewinnung ohne Licht: Chemosynthese	138	Klassische Genetik, Cytogenetik und Humangenetik	189
Kompetenzen: Fotosynthese	139		
		Biologie angewandt:	
		Chorea Huntington – ein monogenes Erbleiden	190
Biologische Prinzipien: Stoffwechsel	140	Symptome der Krankheit und ihre Ursachen	191
		Wissen ist Ohnmacht – genetische Beratung bei Chorea	
VERERBUNG, FORTPFLANZUNG UND ENTWICKLUNG		Huntington	193
Molekulargenetik	142	Angewandte Genetik	194
DNA als Träger der Erbinformation	143	Züchtung	195
Zusammensetzung der DNA	144	Methoden und Ergebnisse der Pflanzen- und Tierzucht	196
Das Watson-Crick-Modell der DNA	145	Grundlagen der Gentechnik	198
DNA und Chromosom	146	Grundoperationen der Gentechnik: Schneiden von DNA	199
Material · Methode · Praxis:		Grundoperationen der Gentechnik: Übertragen von DNA	200
DNA sichtbar machen	147	Grundoperationen der Gentechnik:	
Replikation der DNA	148	Selektion transgener Zellen	201
Material · Methode · Praxis:		Finden und Gewinnen von Genen	202
Analyse von DNA	150	Material · Methode · Praxis:	
Bakterien und Viren in der molekulargenetischen		Gentechnik	203
Forschung	152	Der genetische Fingerabdruck	204
Material · Methode · Praxis:		Gentechnik in der Pflanzenzucht	205
Versuche mit Bakterien	153	Gentechnik in der Lebensmittelherstellung	206
Vom Gen zum Merkmal	154	Gentechnik bei Tieren	207
Von der DNA zum Protein	156	Gentechnik in der medizinischen Diagnostik	208
Proteinbiosynthese	158	Gentechnik in der Medikamentenherstellung	209
Genmutation	160	Gentherapie	210
Regulation der Genaktivität bei Prokarvoten	162	Kompetenzen: Angewandte Genetik	211

Fortpflanzung und Entwicklung	212	Homologien in Entwicklung und im Verhalten	266
Ungeschlechtliche und geschlechtliche Fortpflanzung	213	Molekularbiologische Homologien	267
Embryonalentwicklung der Wirbeltiere	214	Fossilien als Zeugen vergangenen Lebens	268
Embryonalentwicklung des Menschen	216	Biogeografie	270
Schädigende Einflüsse auf die Entwicklung	218	Ordnung der Lebewesen im Spiegel der Evolution	272
Reproduktionstechniken	219	Baupläne der Tiere	274
Faktoren der Entwicklung	220	Schwämme – Nesseltiere – Plattwürmer	275
Material · Methode · Praxis: Entwicklungssteuerung	222	Ringelwürmer	276
Kompetenzen: Fortpflanzung und Entwicklung	223	Gliederfüsser – Trilobiten, Tausendfüsser und	270
Nompetenzen. Forephanzang and Entwicklang	223	Spinnentiere	277
		Gliederfüsser – Krebse	278
Biologische Prinzipien:		Gliederfüsser – Insekten	279
Vererbung, Fortpflanzung und Entwicklung	224	Weichtiere	280
vererbung, rortphanzung und Entwicklung	224	Stachelhäuter	281
HUMANBIOLOGIE		Chordatiere	282
	226		284
Immunbiologie des Menschen	227	Material · Methode · Praxis: Auf den Spuren der Evolution	285
Organe und Zellen des Abwehrsystems Unspezifische Abwehr	227	Ergebnisse der Evolution	280
·	230	Piologio angovandt	
Spezifische Abwehr: ein Überblick	232	Biologie angewandt:	286
Spezifische Abwehr: Bildung und Bau der Antikörper		Vögel – Nachfahren der Saurier	
Spezifische Abwehr: Antikörperwirkung – Antikörperklassen		Merkmale von Archaeopteryx	287
Spezifische Abwehr: zellvermittelte Immunreaktion	233	Federn und Flug des Archaeopteryx	288
Transplantation und Transfusion	234	Archaeopteryx und die Evolution der Vögel	289
Material · Methode · Praxis: Antigene und Antikörper	235	Production des Managements	200
Infektionskrankheiten	236	Evolution des Menschen	290
Aktive und passive Immunität	237	Doppelte Evolution des Menschen	291
Immunkrankheiten	238	Primaten	292
Krebs und Immunsystem	240	Der Mensch – ein Primat mit Besonderheiten	294
Kompetenzen: Immunbiologie des Menschen	241	Schlüsselereignisse in der Evolution des Menschen	296
		Material · Methode · Praxis:	
		Auf der Suche nach den Ursprüngen	297
Biologische Prinzipien: Immunbiologie	242	Frühe Fossilgeschichte des Menschen	298
		Jüngere Fossilgeschichte des Menschen	300
EVOLUTION		Stammbaum des Menschen	301
		Ursprung des modernen Menschen	302
Ursachen der Evolution	244	Kompetenzen: Evolution des Menschen	303
Phänomen Vielfalt	245		
Entwicklung des Evolutionsgedankens	246	Geschichte des Lebens	304
Populationen und ihre genetische Struktur	248	Ursprung des Lebens	305
Selektion	250	Entstehung des Lebens: Hypothesen und Experimente	306
Wirken der Selektion	251	Frühe biologische Evolution	307
Selektionsfaktoren	252	Entfaltung des Lebens vom Präkambrium bis	
Isolation	254	zur Gegenwart	308
Isolationsmechanismen	255	Algen	310
Gendrift	256	Pflanzen besiedeln das Land	311
Material · Methode · Praxis:		Evolution der Farnpflanzen	312
Evolutionsfaktoren und Evolutionsmodelle	257	Evolution der Samenpflanzen	313
Entstehung neuer Arten	258	Erfolgsmodell Bedecktsamer	314
Adaptive Radiation	259	Evolution der Wirbeltiere	316
Die synthetische Theorie der Evolution	260	Fossile und lebende "Kronzeugen" der Stammesgeschichte	317
Kompetenzen: Ursachen der Evolution	261	Ergebnisse der Stammesgeschichte	318
		Kompetenzen: Geschichte des Lebens	319
Ergebnisse der Evolution	262		
Formen biologischer Ähnlichkeit	263		
Homologien im Bau der Lebewesen	264	Biologische Prinzipien: Evolution	320

ÖKOLOGIE		Vielfalt – Stabilität – Gleichgewicht	376
		Biodiversität	378
Ökofaktoren der unbelebten Umwelt	322	Wert der Biodiversität	380
Ökofaktor Temperatur	323	Gefährundung der Biodiversität	381
Pflanzen und Temperatur	324		
Material · Methode · Praxis:		Biologie angewandt:	
Abiotische Ökofaktoren und Bioindikatoren	325	Die Honigbiene – nützlich und bedroht	382
Tiere und Temperatur	326	Ökosysteme aus Menschenhand	384
Ökofaktor Licht	328	Kompetenzen: Ökosysteme	385
Ökofaktor Wasser	329		
Wasserhaushalt der Pflanzen	330	Biologie angewandt:	
Material · Methode · Praxis: Pflanze und Wasser	331	Nachhaltiger Waldbau – Investition in die Zukunft	386
Anpassungen von Pflanzen an die Verfügbarkeit		Standortfaktoren und Waldgesellschaften	387
von Wasser	332	Untersuchung eines Waldstandortes	388
Wasser- und Salzhaushalt der Tiere	334	Nachhaltige Bewirtschaftung	389
An den Grenzen des Lebens	335		
Zusammenwirken abiotischer Faktoren im Lebensraum	336	Biologie angewandt:	
Kompetenzen: Ökofaktoren der unbelebten Umwelt	337	Der Stadtparkteich – Lebensraum und Freitzeitrevier	390
		See und Stadtparkteich – Vergleich der Lebensbedingungen	391
Beziehungen zwischen Lebewesen	338	Untersuchung eines Parkteichs	392
Biotische Faktoren im Überblick	339	Hilfe für das Ökosystem Parkteich	393
Fressfeind-Beute-Beziehung	340		
Parasitismus	341	Mensch und Umwelt	394
Symbiose	342	Belastung und Schutz der Böden	395
Material · Methode · Praxis: Biotische Ökofaktoren	343	Belastung der Luft durch den Menschen	396
Konkurrenz	344	Material – Methode – Praxis	
Konkurrenzabschwächung	345	Ozonsmog und Überwachung der Luftqualität	397
Ökologische Nische	346	Klimawandel	398
Stellenäquivalenz und Lebensformtyp	348	Belastung der Gewässer durch den Menschen	400
Ökologische Vorgänge in Populationen	349	Bevölkerungswachstum und Energiebedarf	402
Entwicklung von Populationen	350		
Material · Methode · Praxis:			
Schädlinge und Schädlingsbekämpfung	352	Biologische Prinzipien: Ökologie	404
Kompetenzen: Beziehungen zwischen Lebewesen	353		
		INFORMATIONSVERARBEITUNG UND REGELUNG	
Biologie angewandt:			
Die Brennnessel – Beispiel ökologischer Verflechtungen	354	Erregungsbildung – Erregungsleitung	406
Ökologie der Brennnessel	355	Das Neuron als Grundeinheit des Nervensystems	407
Untersuchungen zum Standort der Brennnessel	356	Grundlagen der Bioelektrizität	408
Vom Nutzen der Brennnessel	357	Material · Methode · Praxis:	
		Elektrophysiologische Untersuchungen	410
Ökosysteme	358	Ruhepotenzial	411
Aufbau und Merkmale von Ökosystemen	359	Aktionspotenzial	412
Ökosystem Wald	360	Erregungsleitung im Axon	414
Ökosystem See	362	Erregungsübertragung an den Synapsen	416
Ökosystem Bach	364	Angriffspunkt Synapse: Stoffe wirken auf das Nervensystem	418
Biologische Produktion in Ökosystemen	366	Erregungsbildung – Erregungsleitung	419
Nahrungsbeziehungen	367		
Abbau und Kreislauf der Stoffe	368	Sinnesorgane – Sinnesfunktion	420
Energiefluss	370	Sinneszellen als Wandler	421
		Lichtsinnesorgan Auge	422
Biologie angewandt:		Das menschliche Auge als Beispiel für ein Wirbeltierauge	423
Wiese	372	Fotorezeption	424
Entwicklung von Ökosystemen	374	Intensitätscodierung	425
Material · Methode · Praxis: Sukzession	375	Bildverarbeitung in der Netzhaut	426

Farbensehen	428	VERHALTENSBIOLOGIE	
Die vielseitigen Mechanorezeptoren	430		
Fremde Sinneswelten	432	Verhalten	478
Kompetenzen: Sinnesorgane – Sinnesfunktion	433	Methoden der Verhaltensbiologie: Beobachten und	
		Beschreiben	479
Gehirn – Wahrnehmung – Speicherung	434	Methoden der Verhaltensbiologie: Messen, Auswerten	
Informationsverarbeitung im Zentralnervensystem	435	und Analysieren	480
Bau des Gehirns und Funktion der Hirnteile	436	Betrachtungsebenen des Verhaltens	481
Die Felder der Großhirnrinde	437	Reflexe	482
Erforschung der Hirnfunktionen	438	Material · Methode · Praxis:	
Wahrnehmung am Beispiel Sehen	439	Reflexe	483
Lernen und Gedächtnis	440	Instinkthandlungen	484
Denken – Sprechen – Fühlen	442	Material · Methode · Praxis:	
Material · Methode · Praxis: Medikament oder Rauschdroge?	444	Schlüsselreize	486
Kompetenzen: Gehirn – Wahrnehmung – Speicherung	445	Angeborenes Verhalten –Reifung – Lernen	487
		Prägung	488
Biologie angewandt:		Konditionierung	490
Pharmaka – Nutzen und Risiken	446	Nachahmung und Tradition	491
Arzneimittelwirkung am Beispiel der		Kognitives Lernen	492
Betarezeptorenblocker (ß-Blocker)	447	Konzepte der Verhaltensökologie und Soziobiologie	493
Versuche zu Pharmaka	448	Kooperation und Konflikte von Gruppen	494
Vom Wirkstoff zum Arzneimittel	449	Kampfverhalten	496
		Territorialität	498
Bewegungskontrolle	450	Uneigennütziges Verhalten	499
Vom Aktionspotential zur Muskelkontraktion	451	Geschlechterbeziehungen	500
Reflexe als Grundelement der Bewegungskoordination	452	Methoden zur Untersuchung menschlicher	300
Bewegungskontrolle	454	Verhaltensweisen	502
Von der Absicht zur Bewegung	455	Kommunikation zwischen Menschen	503
Autonome Bewegungsprogramme	456	Biologische Muster im zwischenmenschlichen Verhalten	504
Erkrankungen des menschlichen Nervensystems	457	Menschliches Sexualverhalten	506
Neurobiologie und Verhalten	458	Kompetenzen: Verhalten	507
Kompetenzen: Bewegungskontrolle	459	Kompetenzen. Vernaten	507
Kompetenzen. Bewegungskontrone	733		
Regelung und Integration der Körperfunktionen	460	Biologische Prinzipien: Verhaltensbiologie	508
Homöostase durch Steuerung und Regelung	461	biologische i inizipien. vernaterisbiologie	300
Vegetatives Nervensystem	462	Glossar	510
Hormonsystem	463	Register	520
Schilddrüse und Energieumsatz	464	Bildnachweis	528
Pankreas und Blutzuckerregelung	465	bildiactiweis	320
Hormone und Keimdrüsenfunktionen	466		
Stress und Stresshormone	468		
Zelluläre Hormonwirkungen	470		
Kompetenzen:	470		
Regelung und Integration der Körperfunktionen	471		
regerang and integration der korpertunktionen	4/1		
Biologie angewandt:			
Diabetes mellitus – eine Krankheit wird beherrschbar	472		
Deuten und seine Folgen	473		
Untersuchung von Pankreasgewebe –	713		
Testmethoden für Zucker	474		
Insulin	474		
IIIJUIIII	413		
Biologische Prinzipien: Informationsverarbeitung			
und Regelung	476		
	., 0		